Protein kinase C inhibition differentially affects 3,4-methylenedioxymethamphetamine-induced dopamine release in the striatum and prefrontal cortex of the rat
by
Nair SG, Gudelsky GA.
College of Pharmacy, University of Cincinnati,
3223 Eden Avenue, Cincinnati,
OH 45267, USA.
Brain Res. 2004 Jul 9;1013(2):168-73


ABSTRACT

The acute administration of 3,4-methylenedioxymethamphetamine (MDMA) elevates extracellular concentrations of dopamine (DA) and serotonin (5-HT) in the rat striatum and medial prefrontal cortex (mPFC). The release of DA induced by MDMA is thought to involve both transporter and impulse-mediated processes. Furthermore, the impulse-dependent release of DA in the striatum elicited by MDMA appears to involve 5-HT(2) receptor activation. Since 5-HT(2) receptors are known to utilize protein kinase C (PKC) for intracellular signaling, we examined the effects of modulators of PKC activity on DA release stimulated by MDMA. Reverse dialysis of the PKC inhibitors bisindolylmaleimide I (BIM; 30 microM) or chelerythrine chloride (100 microM) through a microdialysis probe significantly attenuated the MDMA (10 mg/kg, i.p.)-induced increase in the extracellular concentration of DA in the striatum. In contrast, BIM did not significantly alter the increase in the extracellular concentration of DA in the striatum elicited by amphetamine (5 mg/kg, i.p.). Reverse dialysis of a PKC activator, phorbol 12,13-dibutyrate (PDBu) (0.5 microM), through the microdialysis probe into the striatum, significantly increased MDMA-induced DA release. In contrast to the inhibitory effects of the PKC inhibitors on MDMA-induced DA release in the striatum, intracortical infusion of BIM enhanced MDMA-induced release of DA in the mPFC. These data suggest that PKC-mediated signaling pathways differentially modulate MDMA-induced DA release from mesocorticolimbic and nigrostriatal neurons.

D1 and D2
Vanoxerine
MDMA/MDE
Controversies
Protect and survive
MDMA and immunity
MDMA and dopamine
Dopaminergic damage
Mesolimbic dopamine
MDMA and serotonin synthesis
MDMA, serotonin and dopamine
Potentiation of dopamine release
Haloperidol pretreatment: effects
Ecstasy and dopamine neurons: risks?


Refs
and further reading

HOME
HedWeb
Nootropics
cocaine.wiki
Future Opioids
BLTC Research
MDMA/Ecstasy
Superhapiness?
Utopian Surgery?
The Abolitionist Project
The Hedonistic Imperative
The Reproductive Revolution
Critique of Huxley's Brave New World

The Good Drug Guide
The Good Drug Guide

The Responsible Parent's Guide
To Healthy Mood Boosters For All The Family