Influences of the corticotropic axis and sympathetic activity on neurochemical consequences of 3,4-methylenedioxymethamphetamine (MDMA) administration in Fischer 344 rats
by
Fernandez F, Aguerre S, Mormede P, Chaouloff F.
NeuroGenetique et Stress, INSERM U471-INRA,
Institut F. Magendie, Rue Camille Saint Saens,
33077 Bordeaux Cedex, France.
Eur J Neurosci 2002 Aug;16(4):607-18


ABSTRACT

The respective influences of the corticotropic axis and sympathetic activity on 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) immediate effects on body temperature and long-term neurotoxicity, as assessed by decreases in hippocampal and striatal [3H]5-hydroxytryptamine ([3H]5-HT) reuptake, [3H]paroxetine binding at 5-HT transporters (5-HTT), and 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) levels, were examined in Fischer 344 rats. On each of the two injections of MDMA (5 or 10 mg/kg s.c. once a day for 2 consecutive days) body temperature rapidly increased in a dose-dependent manner. Six days after the last injection of 10 mg/kg MDMA, [3H]5-HT reuptake, [3H]paroxetine binding and 5-HT and 5-HIAA levels were decreased in the hippocampus and, to a lower extent, in striatum. Prior adrenalectomy (1 week beforehand), which weakened the immediate hyperthermic effect of MDMA, prevented the long-term MDMA-elicited reduction in hippocampal and striatal [3H]paroxetine binding. Supplementation of adrenalectomised Fischer 344 rats with corticosterone almost reinstated the immediate hyperthermic effect of MDMA and restored MDMA-elicited reduction in hippocampal and striatal [3H]paroxetine binding. In a final set of experiments, Fischer 344 rats were pretreated (30 min before each of the two injections of 10 mg/kg MDMA) with the ganglionic blocker chlorisondamine (2.5 mg/kg). This pretreatment markedly reduced the amplitudes of the immediate hyperthermia and long-term declines in hippocampal [3H]5-HT reuptake and [3H]paroxetine binding at 5-HTT, and in hippocampal and striatal 5-HT and 5-HIAA levels. These results suggest that sympathetic activity (possibly through its control of body temperature), but not corticotropic activity, plays a key role in MDMA-elicited neurotoxicity in Fischer 344 rats.

History
Club drugs
Abstinence
MDMA/MDE
Parkinson's?
Liver failure
Brain damage?
Protect and survive
Deaths in New York
Ecstasy and tryptophan
Toxic metabolites of MDMA
Ecstasy and serotonin synthesis
Serotonin/dopamine interactions
A distal axotomy of brain serotonin neurons?
Electrophysiological evidence of 5-HT damage
Non-neurotoxic and neurotoxic serotonin-releasers
5-HT, 5-HIAA, norepinephrine, epinephrine and dopamine