The pharmacology of the acute hyperthermic response that follows administration of 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') to rats
by
Mechan AO, Esteban B, O'Shea E,
Elliott JM, Colado MI, Green AR.
Pharmacology Research Group,
School of Pharmacy, De Montfort University,
The Gateway, Leicester LE1 9RH.
Br J Pharmacol 2002 Jan;135(1):170-80


ABSTRACT

1. The pharmacology of the acute hyperthermia that follows 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') administration to rats has been investigated. 2. MDMA (12.5 mg kg(-1) i.p.) produced acute hyperthermia (measured rectally). The tail skin temperature did not increase, suggesting that MDMA may impair heat dissipation. 3. Pretreatment with the 5-HT(1/2) antagonist methysergide (10 mg kg(-1)), the 5-HT(2A) antagonist MDL 100,907 (0.1 mg kg(-1)) or the 5-HT(2C) antagonist SB 242084 (3 mg kg(-1)) failed to alter the hyperthermia. The 5-HT(2) antagonist ritanserin (1 mg kg(-1)) was without effect, but MDL 11,939 (5 mg kg(-1)) blocked the hyperthermia, possibly because of activity at non-serotonergic receptors. 4. The 5-HT uptake inhibitor zimeldine (10 mg kg(-1)) had no effect on MDMA-induced hyperthermia. The uptake inhibitor fluoxetine (10 mg kg(-1)) markedly attenuated the MDMA-induced increase in hippocampal extracellular 5-HT, also without altering hyperthermia. 5. The dopamine D(2) antagonist remoxipride (10 mg kg(-1)) did not alter MDMA-induced hyperthermia, but the D(1) antagonist SCH 23390 (0.3 - 2.0 mg kg(-1)) dose-dependently antagonized it. 6. The dopamine uptake inhibitor GBR 12909 (10 mg kg(-1)) did not alter the hyperthermic response and microdialysis demonstrated that it did not inhibit MDMA-induced striatal dopamine release. 7. These results demonstrate that in vivo MDMA-induced 5-HT release is inhibited by 5-HT uptake inhibitors, but MDMA-induced dopamine release may not be altered by a dopamine uptake inhibitor. 8. It is suggested that MDMA-induced hyperthermia results not from MDMA-induced 5-HT release, but rather from the increased release of dopamine that acts at D(1) receptors. This has implications for the clinical treatment of MDMA-induced hyperthermia.

Carvedilol
Controversies
Prenatal ecstasy
Men and women
Alexander Shulgin
Body temperature
Water intoxication
Prozac and ecstasy
Protect and survive
L-deprenyl and ecstasy
MDMA-induced hyperthermia
MDMA and body temperature
MDMA-induced hyperthermia in rhesus monkeys
Clozapine reverses MDMA-induced hyperthermia


Refs
and further reading

HOME
HedWeb
Nootropics
cocaine.wiki
Future Opioids
BLTC Research
MDMA/Ecstasy
Superhapiness?
Utopian Surgery?
The Abolitionist Project
The Hedonistic Imperative
The Reproductive Revolution
Critique of Huxley's Brave New World

The Good Drug Guide
The Good Drug Guide

The Responsible Parent's Guide
To Healthy Mood Boosters For All The Family